Comparative proteomics analysis of global cellular stress responses to hydroxyurea-induced DNA damage in HeLa cells

Cytotechnology. 2016 Aug;68(4):809-20. doi: 10.1007/s10616-014-9832-y. Epub 2014 Dec 18.

Abstract

Both environmental agents and spontaneous cellular events cause serious DNA damage, threatening the integrity of the genome. In response to replication stress or genotoxic agents triggered DNA damage, degradation of p12 subunit of DNA polymerase delta (Pol δ) results in an inter-conversion between heterotetramer (Pol δ4) and heterotrimer (Pol δ3) forms and plays a significant role in DNA damage response in eukaryotic cells. In this work, we used mass spectrometry-based proteomic approach to identify those cellular stress response protein changes corresponding to the degradation of p12 in DNA-damaged HeLa cells by the treatment with hydroxyurea (HU). A total of 736 ± 13 proteins in non-treated control group and 741 ± 19 protein spots in HU-treated cells were detected, of which 34 proteins (17 up-regulated and 17 down-regulated) exhibited significantly altered protein expression levels. Their physiological roles are mainly associated with cellular components, molecular functions, and biological processes by gene ontology analysis, among which 21 proteins were mapped to KEGG pathways. They are involved in 5 primary pathways with the subsets involving 16 secondary pathways by further KEGG analysis. More interestingly, the up-regulation of translationally controlled tumor protein was further identified to be associated with p12 degradation by Western blot analysis. Our works may enlarge and broaden our view for deeply understanding how global cellular stress responds to DNA damage, which could contribute to the etiology of human cancer or other diseases that can result from loss of genomic stability.

Keywords: DNA damage response; Down-regulation of p12 subunit; Hydroxyurea treatment; Mass spectrometry; Two-dimensional gel electrophoresis; Up-regulation of TCTP.