Crossbreeding of transgenic flax plants overproducing flavonoids and glucosyltransferase results in progeny with improved antifungal and antioxidative properties

Mol Breed. 2014;34(4):1917-1932. doi: 10.1007/s11032-014-0149-5. Epub 2014 Aug 21.

Abstract

Flavonoids are a large group of secondary plant metabolites with many important functions; they play a role in fruit, flower and seed pigmentation and are involved in multiple protective mechanisms. They are very active natural antioxidants, acting as antimicrobial compounds in defense against pathogens, and they protect the plant against various stress factors, including excessive solar radiation and temperature. They are also an animal deterrent. Flax is already a very useful crop plant with nutritional and biomedical applications. With increased phenylpropanoid content, flax plants could be used in the production of improved dietary supplements and antimicrobial agents. The main aim of this study was to engineer a flax variety with increased flavonoid content by crossing two transgenic flax varieties that have heightened flavonoid levels. A mother plant that over expresses genes encoding the flavonoid biosynthesis pathway enzymes chalcone synthase, chalcone isomerase and dihydroflavonol reductase was crossed with plants overexpressing the glucosyltransferase (GT) gene. It was expected that the progeny would display better properties thanks to the simultaneous increases in flavonoid synthesis and stability. In comparison to the control and parental plants, plants of the selected flax lines were found to have increased contents of flavonoids and other phenylpropanoids, including phenolic acids, in their stems and seeds. A significant increase in the secoisolariciresinol diglucoside content was found in the seeds. The antioxidative properties of extracts from W92 × GT crossbreed plants were higher than the control (non-transgenic) and parental plants. These results correlated with the increase in the susceptibility of the crossbreeds to Fusarium infection. The increased flavonoid content did not cause any negative phenotypic changes or reduce the yield of seeds.

Keywords: Antifungal activity; Antioxidants; Cross breeding; Flavonoids; Flax; Fusarium.