Determination of rhodium in metallic alloy and water samples using cloud point extraction coupled with spectrophotometric technique

Spectrochim Acta A Mol Biomol Spectrosc. 2015 Feb 5:136 Pt C:1955-61. doi: 10.1016/j.saa.2014.10.116. Epub 2014 Oct 31.

Abstract

A new method to estimate rhodium in different samples at trace levels had been developed. Rhodium was complexed with 5-(4'-nitro-2',6'-dichlorophenylazo)-6-hydroxypyrimidine-2,4-dione (NDPHPD) as a complexing agent in an aqueous medium and concentrated by using Triton X-114 as a surfactant. The investigated rhodium complex was preconcentrated with cloud point extraction process using the nonionic surfactant Triton X-114 to extract rhodium complex from aqueous solutions at pH 4.75. After the phase separation at 50°C, the surfactant-rich phase was heated again at 100°C to remove water after decantation and the remaining phase was dissolved using 0.5mL of acetonitrile. Under optimum conditions, the calibration curve was linear for the concentration range of 0.5-75ngmL(-1) and the detection limit was 0.15ngmL(-1) of the original solution. The enhancement factor of 500 was achieved for 250mL samples containing the analyte and relative standard deviations were ⩽1.50%. The method was found to be highly selective, fairly sensitive, simple, rapid and economical and safely applied for rhodium determination in different complex materials such as synthetic mixture of alloys and environmental water samples.

Keywords: Azo dyes; Cloud point extraction; Environmental analysis; Rhodium determination; Spectrophotometry.