Antiplasmodial activity of solvent fractions of methanolic root extract of Dodonaea angustifolia in Plasmodium berghei infected mice

BMC Complement Altern Med. 2014 Dec 3:14:462. doi: 10.1186/1472-6882-14-462.

Abstract

Background: Malaria is one of the most important infectious diseases in the World. The choice for the treatment is highly limited, and several of these may eventually be lost or compromised due to drug resistance. The use of plant medicine in the treatment of malaria and its various presentations is a common practice in many countries of Africa where the disease is mostly endemic. Dodonaea angustifolia is traditionally used in Ethiopia for prophylaxis against malaria. The present study is attempted to evaluate the antimalarial activity of the solvent fractions of root extracts of D. angustifolia in P. berghei infected mice.

Methods: In this study, 4-days Peter's suppressive test was used to determine parasite inhibition. Acute toxicity test was also conducted on the most active fraction according to Organization for Economic Cooperation and Development (OECD) guidelines 425. Data was analyzed by using Windows SPSS version 16 and expressed as mean ± SD for each dose level. ANOVA followed by Post Hoc Tukey's HSD was used to compare result between treatment and control groups. Students paired t-test was employed to test significance for the difference between initial and final results within the same group.

Results: All three fractions showed varying degrees of antiplasmodial activity. The n-butanol fraction displayed a relatively highest suppression of parasitaemia (67.51%) at an oral dose of 600 mg/kg. Lower doses, 200 mg/kg and 400 mg/kg, of the fraction also resulted in parasitaemia suppression of 38.02% and 55.85%, respectively. Chemosuppressive activity of chloroform and aqueous fractions was less compared to that of n-butanol fraction. All the three fractions displayed dose dependent significant (P < 0.001) antiplasmodial activity as compared to the control. Survival time was prolonged in case of n-butanol and chloroform fractions. No lethality to mice was seen with n-butanol fraction up to a dose of 2000 mg/kg.

Conclusion: All the three fractions possessed significant antiplasmodial activity as compared with the control group. n-butanol fraction was found to be the most active fraction with minimal toxicity and might contain potential lead molecule for the development of a new drug for treatment of malaria.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antimalarials / pharmacology
  • Antimalarials / therapeutic use*
  • Ethiopia
  • Malaria / drug therapy*
  • Malaria / parasitology
  • Male
  • Mice
  • Phytotherapy*
  • Plant Extracts / pharmacology
  • Plant Extracts / therapeutic use*
  • Plant Roots
  • Plasmodium berghei / drug effects*
  • Sapindaceae*

Substances

  • Antimalarials
  • Plant Extracts