Synergistic effects of curcumin and bevacizumab on cell signaling pathways in hepatocellular carcinoma

Oncol Lett. 2015 Jan;9(1):295-299. doi: 10.3892/ol.2014.2694. Epub 2014 Nov 10.

Abstract

The aim of the present study was to explore the effects of curcumin in combination with bevacizumab on the vascular endothelial growth factor (VEGF)/VEGF receptor (VEGFR)/K-ras pathway in hepatocellular carcinoma. A total of 30 Sprague Dawley (SD) rats were randomly divided into five groups: Control, model, curcumin, VEGF blocker, and curcumin + VEGF blocker groups. The mRNA levels of VEGF and VEGFR in all groups were subsequently measured by quantitative reverse transcriptase-polymerase chain reaction and the protein expression of K-ras was detected by western blot analysis. Compared with the control group, the mRNA levels of VEGF and VEGFR were revealed to be significantly increased in the model, curcumin and VEGF blocker groups. The VEGF mRNA levels in the curcumin, VEGF blocker and curcumin + VEGF blocker groups were all decreased when compared with the model group. In addition, the VEGF mRNA levels in the curcumin + VEGF blocker group were significantly lower compared with the curcumin group (P<0.05). The VEGF mRNA levels in the curcumin, VEGF blocker and curcumin + VEGF blocker groups were decreased when compared with the model group (P=0.0001). No significant differences in VEGF mRNA levels were identified between the VEGF blocker and curcumin groups (P=0.863), whereas the VEGF mRNA levels in the curcumin + VEGF blocker group were significantly lower than that of the curcumin group (P=0.025). Curcumin and the VEGF blocker are each capable of inhibiting hepatocellular carcinoma progression by regulating the VEGF/VEGFR/K-ras pathway. The combination of the two compounds has a synergistic effect on the inhibition of the effects of the VEGF signaling pathways in hepatocellular carcinoma progression.

Keywords: K-ras; curcumin; hepatocellular carcinoma; signaling pathway; vascular endothelial growth factor; vascular endothelial growth factor blocker.