Associations between daily mortality in London and combined oxidant capacity, ozone and nitrogen dioxide

Air Qual Atmos Health. 2014;7(4):407-414. doi: 10.1007/s11869-014-0249-8. Epub 2014 Mar 22.

Abstract

Both nitrogen dioxide (NO2) and ozone (O3) are powerful oxidants in ambient air that are intimately linked through atmospheric chemistry and which continuously interchange over very short timescales. Based upon atmospheric chemistry alone, there is a strong, a priori, reason for considering O3 and NO2 together in epidemiological studies, rather than either of the two pollutants separately in single-pollutant models. This paper compares two approaches to this, using Ox, defined as O3 + NO2, as a single metric and also using O3 and NO2 together in two-pollutant models. We hypothesised that the magnitude of the association between Ox and daily mortality would be greater than for NO2 and O3 individually. Using collocated hourly measurements for O3 and NO2 in London, from 2000 to 2005, we carried out a time series analysis of daily mortality. We investigated O3, NO2 and Ox individually in single-pollutant Poisson regression models and NO2 and O3 jointly in two-pollutant models in both all-year and season-specific analyses. We observed larger associations for mean 24-h concentrations of Ox (1.30 % increase in mortality per 10 ppb) than for O3 (0.87 %) and NO2 (0 %) individually. However, when analysed jointly in two-pollutant models, associations for O3 (1.54 %) and NO2 (1.07 %) were comparable to the Ox association. Season-specific analyses broadly followed this pattern irrespective of whether the Ox concentrations were driven by O3 production (summer) or depletion (winter). This novel approach in air pollution epidemiology captures the simultaneous impact of both oxidants whilst avoiding many of the statistical issues associated with two-pollutant models and potentially simplifies health impact calculations.

Keywords: Mortality; Nitrogen dioxide; Oxidants; Ozone; Time series.