Cellular uptake mechanism of TCTP-PTD in human lung carcinoma cells

Mol Pharm. 2015 Jan 5;12(1):194-203. doi: 10.1021/mp500547f. Epub 2014 Nov 25.

Abstract

We reported previously that human translationally controlled tumor protein (TCTP) contains, at its NH2-terminus, a protein transduction domain (PTD), which we called TCTP-PTD, with the amino acid sequence MIIYRDLISH. In this report we describe how TCTP-PTD penetrates A549 human lung cancer cell membranes and promotes protein internalization. Cellular uptake of fluorescent TCTP-PTD and a recombinant fusion protein consisting of TCTP-PTD and GFP (green fluorescent protein) was analyzed by confocal fluorescence microscopy and flow cytometry. Inhibitor assays using several agents that perturb the internalization process revealed that TCTP-PTD transduces the cells partly via lipid-raft/caveola-dependent endocytosis and partly by macropinocytosis in a dynamin/actin/microtubule-dependent pathway. To trace the pathway followed by the penetration of TCTP-PTD, the localization of PTDs was investigated in the lipid-raft, subcellular, and ER fractions. We found that, after entry, TCTP-PTD is localized in the cytoplasm and cytoskeleton, but not in the nucleus, and is transported into endoplasmic reticulum (ER). Expression levels of caveolin-1 in A549 and HeLa cells are different, and these differences appear to contribute to the sensitivity of TCTP-PTD uptake inhibition, against lipid-raft depleter, nystatin. This elucidation of the underlying mechanism of TCTP-PTD translocation may help the design of approaches that employ TCTP-PTD in the cellular delivery of bioactive molecules.

Keywords: endocytosis pathway; lipid-rafts/caveolae; mechanism; protein transduction domain (PTD); subcellular fractionations; translationally controlled tumor protein (TCTP).

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biomarkers, Tumor / chemistry*
  • Biomarkers, Tumor / pharmacokinetics*
  • Carcinoma / metabolism*
  • Cell Line, Tumor
  • Cell Membrane / metabolism
  • Cytoplasm / metabolism
  • Endocytosis
  • Gene Expression Regulation, Neoplastic*
  • Green Fluorescent Proteins / chemistry
  • HeLa Cells
  • Humans
  • Lung Neoplasms / metabolism*
  • Membrane Microdomains / chemistry
  • Microscopy, Confocal
  • Peptides / chemistry
  • Protein Binding
  • Protein Structure, Tertiary
  • Recombinant Fusion Proteins / chemistry
  • Tumor Protein, Translationally-Controlled 1

Substances

  • Biomarkers, Tumor
  • Peptides
  • Recombinant Fusion Proteins
  • TPT1 protein, human
  • Tumor Protein, Translationally-Controlled 1
  • Green Fluorescent Proteins