Exogenous application of calcium and silica alleviates cadmium toxicity by suppressing oxidative damage in rice seedlings

Protoplasma. 2015 Jul;252(4):959-75. doi: 10.1007/s00709-014-0731-z. Epub 2014 Nov 21.

Abstract

The present study was undertaken to examine the possible roles of calcium (Ca(2+)) and silica (Si) in protection against oxidative damage due to Cd(2+) toxicity in rice (Oryza sativa L.) seedlings grown in hydroponics. Rice seedlings raised for 12 days in hydroponics containing Cd(NO3)2 (75 μM) showed reduced growth; increase in the level of reactive oxygen species (ROS) (O2 (·-) and H2O2), thiobarbituric acid reactive substances (TBARSs) and protein carbonylation; and increase in the activity of antioxidant enzymes-superoxide dismutase (SOD), catalase (CAT) and guaiacol peroxidase (GPX) compared to untreated controls. Exogenously added Ca(2+) (2 mM) and Si (200 μM) significantly alleviated negative effect of Cd(2+) by restoration of growth of the seedlings, suppression of Cd(2+) uptake and restoration of root plasma membrane integrity. The levels of O2 (·-), H2O2, lipid peroxidation and protein carbonyls were much lower when Ca(2+) and Si were added in the growth medium along with Cd(2+) as compared to Cd-alone-treated seedlings. Ca(2+) and Si lowered Cd-induced increase in SOD, GPX and APX activities while they elevated Cd-induced decline in CAT activity. Using histochemical staining of O2 (·-) and H2O2 in leaf tissues, it was further confirmed that added Ca(2+) and Si suppressed Cd-induced accumulation of O2 (·-) and H2O2 in the leaves. The results suggest that exogenous application of Ca(2+) and Si appears to be advantageous for rice plants in alleviating Cd(2+) toxicity effects by reducing Cd(2+) uptake, decreasing ROS production and suppressing oxidative damage. The observations indicate that Ca(2+) and Si treatments can help in reducing Cd(2+) toxicity in rice plants.

MeSH terms

  • Cadmium / toxicity*
  • Calcium / pharmacology*
  • Oryza / drug effects
  • Oryza / metabolism
  • Oxidative Stress / drug effects
  • Seedlings / drug effects
  • Seedlings / metabolism
  • Silicon Dioxide / pharmacology*

Substances

  • Cadmium
  • Silicon Dioxide
  • Calcium