The Supraspliceosome - A Multi-Task Machine for Regulated Pre-mRNA Processing in the Cell Nucleus

Comput Struct Biotechnol J. 2014 Sep 28;11(19):113-22. doi: 10.1016/j.csbj.2014.09.008. eCollection 2014 Sep.

Abstract

Pre-mRNA splicing of Pol II transcripts is executed in the mammalian cell nucleus within a huge (21 MDa) and highly dynamic RNP machine - the supraspliceosome. It is composed of four splicing active native spliceosomes, each resembling an in vitro assembled spliceosome, which are connected by the pre-mRNA. Supraspliceosomes harbor protein splicing factors and all the five-spliceosomal U snRNPs. Recent analysis of specific supraspliceosomes at defined splicing stages revealed that they harbor all five spliceosomal U snRNAs at all splicing stages. Supraspliceosomes harbor additional pre-mRNA processing components, such as the 5'-end and 3'-end processing components, and the RNA editing enzymes ADAR1 and ADAR2. The structure of the native spliceosome, at a resolution of 20 Å, was determined by cryo-EM. A unique spatial arrangement of the spliceosomal U snRNPs within the native spliceosome emerged from in-silico studies, localizing the five U snRNPs mostly within its large subunit, and sheltering the active core components deep within the spliceosomal cavity. The supraspliceosome provides a platform for coordinating the numerous processing steps that the pre-mRNA undergoes: 5' and 3'-end processing activities, RNA editing, constitutive and alternative splicing, and processing of intronic microRNAs. It also harbors a quality control mechanism termed suppression of splicing (SOS) that, under normal growth conditions, suppresses splicing at abundant intronic latent 5' splice sites in a reading frame-dependent fashion. Notably, changes in these regulatory processing activities are associated with human disease and cancer. These findings emphasize the supraspliceosome as a multi-task master regulator of pre-mRNA processing in the cell nucleus.

Keywords: Alternative splicing; Intronic microRNA biogenesis; Pre-mRNA splicing; Riponucleoproteins (RNPs); Suppression of splicing; U snRNPs.

Publication types

  • Review