Differential FoxP2 and FoxP1 expression in a vocal learning nucleus of the developing budgerigar

Dev Neurobiol. 2015 Jul;75(7):778-90. doi: 10.1002/dneu.22247. Epub 2014 Nov 26.

Abstract

The forkhead domain FOXP2 and FOXP1 transcription factors are implicated in several cognitive disorders with language deficits, notably autism, and thus play a central role in learned vocal motor behavior in humans. Although a similar role for FoxP2 and FoxP1 is proposed for other vertebrate species, including songbirds, the neurodevelopmental expression of these genes are unknown in a species with lifelong vocal learning abilities. Like humans, budgerigars (Melopsittacus undulatus) learn new vocalizations throughout their entire lifetime. Like songbirds, budgerigars have distinct brain nuclei for vocal learning, which include the magnocellular nucleus of the medial striatum (MMSt), a basal ganglia region that is considered developmentally and functionally analogous to Area X in songbirds. Here, we used in situ hybridization and immunohistochemistry to investigate FoxP2 and FoxP1 expression in the MMSt of juvenile and adult budgerigars. We found FoxP2 mRNA and protein expression levels in the MMSt that were lower than the surrounding striatum throughout development and adulthood. In contrast, FoxP1 mRNA and protein had an elevated MMSt/striatum expression ratio as birds matured, regardless of their sex. These results show that life-long vocal plasticity in budgerigars is associated with persistent low-level FoxP2 expression in the budgerigar MMSt, and suggests the possibility that FoxP1 plays an organizational role in the neurodevelopment of vocal motor circuitry. Thus, developmental regulation of the FoxP2 and FoxP1 genes in the basal ganglia appears essential for vocal mimicry in a range of species that possess this relatively rare trait.

Keywords: FoxP1; FoxP2; basal ganglia; budgerigar; gene expression; vocal learning.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Avian Proteins / metabolism*
  • Basal Ganglia / growth & development*
  • Basal Ganglia / metabolism*
  • Female
  • Forkhead Transcription Factors / metabolism*
  • Immunohistochemistry
  • In Situ Hybridization
  • Learning / physiology
  • Male
  • Melopsittacus / growth & development*
  • Melopsittacus / metabolism*
  • Microscopy, Confocal
  • RNA, Messenger / metabolism
  • Vocalization, Animal / physiology

Substances

  • Avian Proteins
  • Forkhead Transcription Factors
  • RNA, Messenger