Fabrication of low-cost thermo-optic variable wave plate based on waveguides patterned on di-ureasil hybrids

Opt Express. 2014 Nov 3;22(22):27159-68. doi: 10.1364/OE.22.027159.

Abstract

An integrated variable wave plate device based on a thermo-optic (TO) effect was fabricated by patterning a waveguide channel through direct UV laser writing on the surface of sol-gel derived organic-inorganic hybrid (di-ureasil) films. The di-ureasil layer is stable up to 250 °C and has a high TO coefficient calculated as -(4.9 ± 0.5) × 10(-4) °C(-1) at 1550 nm. The waveguide temperature was tuned, inducing optical phase retardation between the transverse electric and transverse magnetic modes, resulting in a controllable wave plate. A maximum phase retardation of 77 ° was achieved for a waveguide induced temperature increase of 5 °C above room temperature, with a power consumption of 0.4 W. The thermal linear retardation coefficient was calculated to be 19 ± 1 °/ °C.

Publication types

  • Research Support, Non-U.S. Gov't