Bulk charge carrier transport in push-pull type organic semiconductor

ACS Appl Mater Interfaces. 2014 Dec 10;6(23):20904-12. doi: 10.1021/am505572v. Epub 2014 Nov 21.

Abstract

Operation of organic electronic and optoelectronic devices relies on charge transport properties of active layer materials. The magnitude of charge carrier mobility, a key efficiency metrics of charge transport properties, is determined by the chemical structure of molecular units and their crystallographic packing motifs, as well as strongly depends on the film fabrication approaches that produce films with different degrees of anisotropy and structural order. Probed by the time-of-flight and grazing incidence X-ray diffraction techniques, bulk charge carrier transport, molecular packing, and film morphology in different structural phases of push-pull type organic semiconductor, 7,7'-(4,4-bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-b']dithiophene-2,6-diyl)bis(6-fluoro-4-(5'-hexyl-[2,2'-bithiophen]-5yl)benzo[c][1,2,5] thiadiazole), one of the most efficient small-molecule photovoltaic materials to-date, are described herein. In the isotropic phase, the material is ambipolar with high mobilities for a fluid state. The electron and hole mobilities at the phase onset at 210.78 °C are 1.0 × 10(-3) cm(2)/(V s) and 6.5 × 10(-4) cm(2)/(V s), respectively. Analysis of the temperature and electric field dependences of the mobilities in the framework of Gaussian disorder formalism suggests larger energetic and positional disorder for electron transport sites. Below 210 °C, crystallization into a polycrystalline film with a triclinic unit cell symmetry and high degree of anisotropy leads to a 10-fold increase of hole mobility. The mobility is limited by the charge transfer along the direction of branched alkyl side chains. Below 90 °C, faster cooling rates produce even higher hole mobilities up to 2 × 10(-2) cm(2)/(V s) at 25 °C because of the more isotropic orientations of crystalline domains. These properties facilitate in understanding efficient material performance in photovoltaic devices and will guide further development of materials and devices.

Keywords: X-ray diffraction; ambipolar charge transport; mobility; push−pull organic semiconductor; time-of-flight.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.