Influence of Trichobilharzia regenti (Digenea: Schistosomatidae) on the defence activity of Radix lagotis (Lymnaeidae) Haemocytes

PLoS One. 2014 Nov 5;9(11):e111696. doi: 10.1371/journal.pone.0111696. eCollection 2014.

Abstract

Radix lagotis is an intermediate snail host of the nasal bird schistosome Trichobilharzia regenti. Changes in defence responses in infected snails that might be related to host-parasite compatibility are not known. This study therefore aimed to characterize R. lagotis haemocyte defence mechanisms and determine the extent to which they are modulated by T. regenti. Histological observations of R. lagotis infected with T. regenti revealed that early phases of infection were accompanied by haemocyte accumulation around the developing larvae 2-36 h post exposure (p.e.) to the parasite. At later time points, 44-92 h p.e., no haemocytes were observed around T. regenti. Additionally, microtubular aggregates likely corresponding to phagocytosed ciliary plates of T. regenti miracidia were observed within haemocytes by use of transmission electron microscopy. When the infection was in the patent phase, haemocyte phagocytic activity and hydrogen peroxide production were significantly reduced in infected R. lagotis when compared to uninfected counterparts, whereas haemocyte abundance increased in infected snails. At a molecular level, protein kinase C (PKC) and extracellular-signal regulated kinase (ERK) were found to play an important role in regulating these defence reactions in R. lagotis. Moreover, haemocytes from snails with patent infection displayed lower PKC and ERK activity in cell adhesion assays when compared to those from uninfected snails, which may therefore be related to the reduced defence activities of these cells. These data provide the first integrated insight into the immunobiology of R. lagotis and demonstrate modulation of haemocyte-mediated responses in patent T. regenti infected snails. Given that immunomodulation occurs during patency, interference of snail-host defence by T. regenti might be important for the sustained production and/or release of infective cercariae.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Extracellular Signal-Regulated MAP Kinases / metabolism
  • Hemocytes / immunology*
  • Hemocytes / metabolism
  • Hemocytes / parasitology*
  • Host-Parasite Interactions / immunology*
  • Hydrogen Peroxide / metabolism
  • Lymnaea / immunology*
  • Lymnaea / metabolism
  • Lymnaea / parasitology*
  • Phagocytosis / immunology
  • Protein Kinase C / metabolism
  • Schistosomatidae* / ultrastructure

Substances

  • Hydrogen Peroxide
  • Protein Kinase C
  • Extracellular Signal-Regulated MAP Kinases

Grants and funding

The study was financially supported by the Charles University in Prague (Grant GAUK no. 435911, research programmes PRVOUK - P41/PrF, UNCE - 204017 and SVV 260074/2014). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.