Interplay between photo- and radiation-induced darkening in ytterbium-doped fibers

Opt Lett. 2014 Oct 15;39(20):5969-72. doi: 10.1364/OL.39.005969.

Abstract

This Letter demonstrates a remarkable interplay between photo- and radiation-induced darkening of ytterbium-doped alumino-silica optical fibers operated in amplifying conditions and harsh environments (as, e.g., in space-based applications). Influences of the pump power, ionizing dose, and dose rate on this interaction are characterized. The pump is capable of accelerating or slowing down the radiation-induced darkening build-up depending on the ionizing dose. The steady-state photo-radio-darkening level is independent of the dose and at least equal to the equilibrium level of pure photo-darkening. This lower limit is notably reached at low dose rates, including those encountered in space. We, therefore, argue that photo-resistant ytterbium-doped fibers will resist against a space mission, whatever the dose.