Anomalous optical and magnetic behavior of multi-phase Mn doped Zn(2)SiO(4) nanowires: a new class of dilute magnetic semiconductors

Nanoscale. 2014 Dec 21;6(24):14845-55. doi: 10.1039/c4nr03501a. Epub 2014 Oct 31.

Abstract

We present the synthesis of Mn doped Zn(2)SiO(4) dense nanowire bundles using the VLS mode of growth with unusual optical and magnetic properties. The synthesized Zn(2)SiO(4) nanowires were identified with two phases, α-Zn(2)SiO(4) as the major phase and β-Zn(2)SiO(4) as the minor phase. XPS studies confirmed that Zn(2)SiO(4) nanowires were Zn rich and Mn doped. Temperature dependent photoluminescence (PL) measurements showed three distinct emission bands: green, yellow and red due to Mn doping in the α-phase, β-phase and the substitution of Si with Mn in the α-phase, respectively. The PL analysis showed that these emission bands followed anomalous Berthelot-type behavior. The carrier escape energies were 70 ± 3 meV, 49 ± 2 meV and 65 ± 4 meV for the 530, 570 and 660 nm bands, respectively, while the radiation rates (Er =) were 1.0 ± 0.4 meV, 3.10 ± 1.10 meV and 1.4 ± 0.4 meV corresponding to the three respective bands. Mn doping of Zn(2)SiO(4) nanowires induced ferromagnetism, which was observed above room temperature, with a Curie temperature well above 380 K. The observation of magnetic behavior in this class of semiconductors has potential applications in high temperature spintronics and magneto-optical devices.

Publication types

  • Research Support, Non-U.S. Gov't