Identification of cellular and molecular factors determining the response of cancer cells to six ergot alkaloids

Invest New Drugs. 2015 Feb;33(1):32-44. doi: 10.1007/s10637-014-0168-4. Epub 2014 Oct 25.

Abstract

Ergot alkaloids are psychoactive and vasoconstricting agents of the fungus Claviceps purpurea causing poisoning such as ergotism in medieval times (St. Anthony's Fire). This class of substances also inhibits tumor growth in vitro and in vivo, though the underlying mechanisms are unclear as yet. We investigated six ergot alkaloids (agroclavine, ergosterol, ergocornin E, ergotamine, dihydroergocristine, and 1-propylagroclavine tartrate) for their cytotoxicity towards tumor cell lines of the National Cancer Institute, USA. 1-Propylagroclavine tartrate (1-PAT) revealed the strongest cytotoxicity. Out of 76 clinically established anticancer drugs, cross-resistance was found between the ergot alkaloids and 6/7 anti-hormonal drugs (=85.7 %) and 5/15 DNA-alkylating drugs (=33.3 %). The IC50 values for the six alkaloids were not correlated to well-known determinants of drug resistance, such as proliferative activity (as measured by cell doubling times, PCNA expression, and cell cycle distribution), the multidrug resistance-mediating P-glycoprotein/MDR1 and expression or mutations of oncogenes and tumor suppressor genes (EGFR, RAS, TP53). While resistance of control drugs (daunorubicin, cisplatin, erlotinib) correlated with these classical resistance mechanisms, ergot alkaloids did not. Furthermore, COMPARE and hierarchical cluster analyses were performed of mRNA microarray data to identify genes correlating with sensitivity or resistance to 1-PAT. Twenty-three genes were found with different biological functions (signal transducers, RNA metabolism, ribosome constituents, cell cycle and apoptosis regulators etc.). The expression of only 3/66 neuroreceptor genes correlated with the IC50 values for 1-PAT, suggesting that the psychoactive effects of ergot alkaloids may not play a major role for the cytotoxic activity against cancer cells. In conclusion, the cytotoxicity of ergot alkaloids is not involved in classical mechanisms of drug resistance opening the possibility to bypass resistance and to treat otherwise drug-resistant and refractory tumors. The modes of action are multifactorial, which is a typical feature of many natural compounds.

MeSH terms

  • Antineoplastic Agents / pharmacology*
  • Cell Line, Tumor
  • Cell Survival / drug effects
  • Drug Resistance, Neoplasm
  • Ergot Alkaloids / pharmacology*
  • Gene Expression Regulation, Neoplastic / drug effects
  • Humans
  • Microarray Analysis
  • Neoplasms / drug therapy*
  • Neoplasms / genetics
  • RNA, Messenger / genetics

Substances

  • Antineoplastic Agents
  • Ergot Alkaloids
  • RNA, Messenger