Pterocarpanquinone LQB-118 induces apoptosis in Leishmania (Viannia) braziliensis and controls lesions in infected hamsters

PLoS One. 2014 Oct 23;9(10):e109672. doi: 10.1371/journal.pone.0109672. eCollection 2014.

Abstract

Previous results demonstrate that the hybrid synthetic pterocarpanquinone LQB-118 presents antileishmanial activity against Leishmania amazonensis in a mouse model. The aim of the present study was to use a hamster model to investigate whether LQB-118 presents antileishmanial activity against Leishmania (Viannia) braziliensis, which is the major Leishmania species related to American tegumentary leishmaniasis. The in vitro antileishmanial activity of LQB-118 on L. braziliensis was tested on the promastigote and intracellular amastigote forms. The cell death induced by LQB-118 in the L. braziliensis promastigotes was analyzed using an annexin V-FITC/PI kit, the oxidative stress was evaluated by 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA) and the ATP content by luminescence. In situ labeling of DNA fragments by terminal deoxyribonucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) was used to investigate apoptosis in the intracellular amastigotes. L. braziliensis-infected hamsters were treated from the seventh day of infection with LQB-118 administered intralesionally (26 µg/kg/day, three times a week) or orally (4,3 mg/kg/day, five times a week) for eight weeks. LQB-118 was active against the L. braziliensis promastigotes and intracellular amastigotes, producing IC50 (50% inhibitory concentration) values of 3,4±0,1 and 7,5±0,8 µM, respectively. LQB-118 induced promastigote phosphatidylserine externalization accompanied by increased reactive oxygen species production and ATP depletion. Intracellular amastigote DNA fragmentation was also observed, without affecting the viability of macrophages. The treatment of L. braziliensis-infected hamsters with LQB-118, either orally or intralesionally, was effective in the control of lesion size, parasite load and increase intradermal reaction to parasite antigen. Taken together, these results show that the antileishmanial effect of LQB-118 extends to L. braziliensis in the hamster model, involves the induction of parasite apoptosis and shows promising therapeutic option by oral or local routes in leishmaniasis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antiprotozoal Agents / pharmacology*
  • Apoptosis / drug effects*
  • Cricetinae
  • Female
  • Leishmania braziliensis / drug effects*
  • Leishmaniasis, Cutaneous / parasitology*
  • Leishmaniasis, Cutaneous / pathology
  • Macrophages / drug effects
  • Macrophages / parasitology
  • Membrane Potential, Mitochondrial / drug effects
  • Mesocricetus
  • Naphthoquinones / pharmacology*
  • Phosphatidylserines / metabolism
  • Pterocarpans / pharmacology*

Substances

  • Antiprotozoal Agents
  • LQB 118
  • Naphthoquinones
  • Phosphatidylserines
  • Pterocarpans

Grants and funding

This work was supported by Fundação de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERJ). PMLD ECTS AJMS PRRC SAGS. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.