A roundabout approach to control morphological orientation and solar-cell performance by modulating side-chain branching position in benzodithiophene-based polymers

Chemphyschem. 2015 Apr 27;16(6):1305-14. doi: 10.1002/cphc.201402461. Epub 2014 Oct 21.

Abstract

To be meaningful to guide the rational design of novel high-performance conjugated semiconductors, we prepared three benzo[1,2-b:4,5-b']dithiophene (BDT)-based polymers by systematically moving the branching point of the alkyl chain. The effect of side-chain engineering was thoroughly investigated by a range of techniques. We demonstrate that a subtle change in the branching position in the BDT core can have a critical impact on polymer packing and preferential backbone orientation in thin films; copolymers made from BDT and thieno[3,4-c]pyrrole-4,6-dione units (TPD) adopt more of a face-on orientation as the branching point is shifted closer to the backbone, which can be correlated with a dramatic difference in solar-cells performance. The high short-circuit current density (11.6 mA cm(-2) ) for the copolymer with one carbon atom between the alkoxylated oxygen atom and the branching point results from its predominantly face-on orientation and smoother surface in thin films, which results in power conversion efficiencies as high as 4.56 %.

Keywords: branching position; conducting materials; organic solar cells; polymers; structure-activity relationships.