Detection of ammonia-oxidizing archaea in fish processing effluent treatment plants

Indian J Microbiol. 2014 Dec;54(4):434-8. doi: 10.1007/s12088-014-0484-6. Epub 2014 Jul 12.

Abstract

Ammonia oxidation is the rate limiting step in nitrification and thus have an important role in removal of ammonia in natural and engineered systems with participation of both ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). However, their relative distribution and activity in fish processing effluent treatment plants (FPETPs) though significant, is hitherto unreported. Presence of AOA in sludge samples obtained from FPETPs was studied by amplification and sequencing of thaumarchaeal ammonia monooxygenase subunit A (AOA-amoA) gene. Different primer sets targeting 16S rRNA and AOA-amoA gene were used for the detection of AOA in FPETPs. Phylogenetic analysis of the gene revealed that the AOA was affiliated with thaumarchaeal group 1.1a lineage (marine cluster). Quantitative real time PCR of amoA gene was used to study the copy number of AOA and AOB in FPETPs. The AOA-amoA and AOB-amoA gene copy numbers of sludge samples ranged from 2.2 × 10(6) to 4.2 × 10(8) and 1.1 × 10(7) to 8.5 × 10(8) mg(-1) sludge respectively. Primer sets Arch-amoAF/Arch-amoAR and 340F/1000R were found to be useful for the sensitive detection of AOA-amoA and Archaeal 16S rRNA genes respectively in FPETPs. Their presence suggests the widespread occurrence and possible usefulness in removing ammonia from FPETPs which is in line with reports from other waste water treatment plants.

Keywords: 16S rRNA gene; AOA-amoA gene; Ammonia oxidation; Ammonia oxidizing archaea; Thaumarchaeota.