Controllably interfacing with metal: a strategy for enhancing CO oxidation on oxide catalysts by surface polarization

J Am Chem Soc. 2014 Oct 22;136(42):14650-3. doi: 10.1021/ja506269y. Epub 2014 Oct 13.

Abstract

Heterogeneous catalysis often involves charge transfer from catalyst surface to adsorbed molecules, whose activity thus depends on the surface charge density of catalysts. Here, we demonstrate a unique solution-phase approach to achieve controllable interfacial lengths in oxide-metal hybrid structures. Resulting from their different work functions, surface polarization is induced by the Ag-CuO interface and acts to tailor the surface charge state of CuO. As a result, the designed hybrid catalysts exhibit enhanced intrinsic activities in catalyzing CO oxidation in terms of apparent activation energy, as compared with their counterparts. Moreover, the CO conversion rate can be enhanced by maximizing the Ag-CuO interfacial length and thus the number of active sites on the CuO. This work provides a new strategy for tuning catalytic performance by controlling interface in hybrid catalysts.