Rapid synthesis of hollow Ag-Au nanodendrites in 15 seconds by combining galvanic replacement and precursor reduction reactions

Chemistry. 2014 Nov 10;20(46):15040-6. doi: 10.1002/chem.201404739. Epub 2014 Oct 3.

Abstract

Metallic nanomaterials displaying hollow interiors as well as sharp tips/branches at their surface (such as hollow nanodendrites) are attractive, because these features enable higher surface-to-volume ratios than their solid and/or rounded counterparts. This paper describes a simple strategy for the synthesis of Ag-Au nanodendrites in 15 s using Ag nanospheres prepared in a previous synthetic step as seeds. Our approach was based on the utilization of Ag nanospheres as seeds for Au deposition by a combination of galvanic replacement reaction between Ag and AuCl4(-)(aq) and AuCl4(-)(aq) reduction using hydroquinone in the presence of polyvinylpyrrolidone (PVP) as a stabilizer and water as the solvent. The produced Ag-Au nanodendrites presented monodisperse sizes, and their surface morphologies could be tuned as a function of growth time. Owing to their hollow interiors and sharp tips, the Ag-Au nanodendrites performed as effective substrates for surface-enhanced Raman scattering (SERS) detection of 4-MPy (4-mercaptopyridine) and R6G (rhodamine 6G) as probe molecules. We believe that the approach described herein can serve as a protocol for the fast and one-step synthesis of Ag-Au hollow nanondendrites with a wide range of sizes, compositions, and surface morphologies for applications in SERS and catalysis.

Keywords: gold; nanostructures; silver; surface plasmon resonance; surface-enhanced Raman spectroscopy.