The correlation between the enzymatic saccharification and the multidimensional structure of cellulose changed by different pretreatments

Biotechnol Biofuels. 2014 Sep 24;7(1):134. doi: 10.1186/s13068-014-0134-6. eCollection 2014.

Abstract

Background: The bioconversion of cellulose into simple sugars or chemicals has attracted extensive attention in recent decades. The crystal allomorphs of cellulose are key factor affecting cellulose saccharification. However, due to the influence of lignin, hemicelluloses, and different characterization methods in the literature, the effect of cellulose allomorphs on cellulose saccharification is still unresolved. Thus, a systematic research on the effect of different cellulose allomorphs on enzymatic saccharification was required.

Results: Multiple approaches, including the use of ionic liquid (IL), ethylenediamine (EDA), glycerol, and sodium hydroxide, were used to pretreat α-cellulose in this work. The properties of the obtained cellulose (crystallinity, lattice spacing, specific surface area, and wettability) were characterized by X-ray diffraction, Brunauer, Emmett, and Teller (BET) specific surface area analysis, and water contact angle analysis, respectively. The distance of the lattice spacing of cellulose III was longer than that of other cellulose samples. The crystallinity and water contact angles of the cellulose samples were ranked in the following order: cellulose treated with IL < cellulose treated with NaOH < cellulose treated with EDA < cellulose without treatment < cellulose treated with glycerol. Cellulose treated with IL, with a crystallinity index value of 20%, was very close to amorphous cellulose. After 72 h hydrolysis, the cellulose conversion ratio ranged from 43% to 99%. Cellulose treated with IL exhibited the best hydrolysis profile, followed by cellulose treated with EDA.

Conclusion: Ionic liquid pretreatment significantly altered the ultrastructure and morphology of cellulose samples, making cellulose much easier for enzymes to digest due to its significantly high amorphous content. However, when the impact of amorphous content was not considered, the allomorph easiest for enzymes to digest was cellulose III, followed by cellulose II, cellulose Iα, and cellulose Iβ. When the cellulose crystallinity index was similar, the allomorph type was the dominant factor. The amorphous content had a strong positive influence on cellulose digestibility. Water contact angle was also an important factor in evaluating the enzymatic hydrolysis efficiency of cellulose except for cellulose III. A high wettability of cellulose enhanced the enzymatic hydrolysis when the crystal allomorph of all the cellulosic samples was the same.

Keywords: Allomorph; Crystalline cellulose; Crystallinity; Lattice spacing; Specific surface area; Water contact angle.