Improving the porosity and catalytic capacity of a zinc paddlewheel metal-organic framework (MOF) through metal-ion metathesis in a single-crystal-to-single-crystal fashion

Inorg Chem. 2014 Oct 6;53(19):10649-53. doi: 10.1021/ic5017092. Epub 2014 Sep 25.

Abstract

Zinc paddlewheel metal-organic frameworks (MOFs) frequently exhibit low stability or complete collapse upon the removal of axial ligands. Hence, there are very few reports on gas adsorption of zinc paddlewheel MOFs. In this work, the N2 and H2 adsorption measurements were carried out for a zinc MOF (namely, SDU-1) based on two types of paddlewheel secondary building units (SBUs): [Zn2(COO)3] and [Zn2(COO)4]. Because of the existence of inherent surface instability upon removal of solvates in zinc paddlewheel SBU, SDU-1 possesses a very low surface area. Through metal-ion metathesis in a single-crystal-to-single-crystal fashion, the Zn(2+) ions in SDU-1 were exchanged by Cu(2+) ions to generate Cu-SDU-1. Through the measurements of gas adsorption and catalytic test, the porosity and catalytic capacity of Cu-SDU-1 have been improved significantly, compared to SDU-1.