Sulfated hyaluronan influences the formation of artificial extracellular matrices and the adhesion of osteogenic cells

Macromol Biosci. 2014 Dec;14(12):1783-94. doi: 10.1002/mabi.201400292. Epub 2014 Sep 12.

Abstract

The aim of this study is to compare differentially sulfated hyaluronan (sHA) derivatives and chondroitin sulfate (CS) with respect to their ability to influence the formation of artificial extracellular matrices (aECMs) during in vitro-fibrillogenesis of collagen type I at high- and low-ionic strength. Analysis is performed using turbidity, biochemical assays, atomic force (AFM), and transmission electron microscopy (TEM). In general, high-sulfated glycosaminoglycans (GAGs) associate to a higher amount with collagen than the low-sulfated ones. The addition of GAGs prior to fibrillogenesis at low-ionic strength results in a dose-dependent decrease in fibril diameter. At high-ionic strength these effects are only obtained for the sHA derivatives but not for CS. Likewise, increasing concentrations and degree of GAG sulfation strongly affected the kinetics of fibrillogenesis. The impact of sulfation degree on F-actin location and fiber formation in SaOS-2 cells implies that adhesion-related intracellular signaling is influenced to a variable extent.

Keywords: atomic force microscopy (AFM); chondroitin sulfate; collagen fibrillogenesis; hyaluronan; matrix.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Actins / metabolism
  • Cell Adhesion
  • Cell Line, Tumor
  • Chondroitin Sulfates / chemistry*
  • Extracellular Matrix / chemistry*
  • Extracellular Matrix / ultrastructure
  • Humans
  • Hyaluronic Acid / chemistry*
  • Microscopy, Atomic Force
  • Osteogenesis*
  • Signal Transduction*

Substances

  • Actins
  • Hyaluronic Acid
  • Chondroitin Sulfates