Synthesis, characterization, and reactivity of furan- and thiophene-functionalized bis(N-heterocyclic carbene) complexes of iron(II)

Inorg Chem. 2014 Sep 15;53(18):9598-606. doi: 10.1021/ic500959m. Epub 2014 Sep 4.

Abstract

The synthesis of iron(II) complexes bearing new heteroatom-functionalized methylene-bridged bis(N-heterocyclic carbene) ligands is reported. All complexes are characterized by single-crystal X-ray diffraction (SC-XRD), nuclear magnetic resonance (NMR) spectroscopy, and elemental analysis. Tetrakis(acetonitrile)-cis-[bis(o-imidazol-2-ylidenefuran)methane]iron(II) hexafluorophosphate (2a) and tetrakis(acetonitrile)-cis-[bis(o-imidazol-2-ylidenethiophene)methane]iron(II) hexafluorophosphate (2b) were obtained by aminolysis of [Fe{N(SiMe3)2}2(THF)] with furan- and thiophene-functionalized bis(imidazolium) salts 1a and 1b in acetonitrile. The SC-XRD structures of 2a and 2b show coordination of the bis(carbene) ligand in a bidentate fashion instead of a possible tetradentate coordination. The four other coordination sites of these distorted octahedral complexes are occupied by acetonitrile ligands. Crystallization of 2a in an acetone solution by the slow diffusion of Et2O led to the formation of cis-diacetonitriledi[bis(o-imidazol-2-ylidenefuran)methane]iron(II) hexafluorophosphate (3a) with two bis(carbene) ligands coordinated in a bidentate manner and two cis-positioned acetonitrile molecules. Compounds 2a and 2b are the first reported iron(II) carbene complexes with four coordination sites occupied by solvent molecules, and it was demonstrated that those solvent ligands can undergo ligand-exchange reactions.