Tunable 975 nm nanosecond diode-laser-based master-oscillator power-amplifier system with 16.3 W peak power and narrow spectral linewidth below 10 pm

Opt Lett. 2014 Sep 1;39(17):5138-41. doi: 10.1364/OL.39.005138.

Abstract

A spectrally tunable, narrow linewidth master oscillator power amplifier system emitting ns pulses with high peak power is presented. The master oscillator is a distributed feedback ridge waveguide (DFB-RW) laser, which is operated in continuous wave (CW) mode and emits at about 975 nm with a spectral line width below 10 pm. The oscillator can be tuned over a range of 0.9 nm by varying the injection current. The tapered amplifier (TA) consists of an RW section and a flared gain-guided section. The RW section of the amplifier acts as an optical gate and converts the CW input beam emitted by the DFB-RW laser into a train of short optical pulses, which are subsequently amplified by the tapered section. The width of the pulses is 8 ns at a repetition rate of 25 kHz. The peak power is 16.3 W. The TA preserves the spectral properties of the emission of the DBR-RW laser. The amplified spontaneous emission is suppressed by about 40 dB.