Overbias light emission due to higher-order quantum noise in a tunnel junction

Phys Rev Lett. 2014 Aug 8;113(6):066801. doi: 10.1103/PhysRevLett.113.066801. Epub 2014 Aug 5.

Abstract

Understanding tunneling from an atomically sharp tip to a metallic surface requires us to account for interactions on a nanoscopic scale. Inelastic tunneling of electrons generates emission of photons, whose energies intuitively should be limited by the applied bias voltage. However, experiments [G. Schull et al., Phys. Rev. Lett. 102, 057401 (2009) indicate that more complex processes involving the interaction of electrons with plasmon polaritons lead to photon emission characterized by overbias energies. We propose a model of this observation in analogy to the dynamical Coulomb blockade, originally developed for treating the electronic environment in mesoscopic circuits. We explain the experimental finding quantitatively by the correlated tunneling of two electrons interacting with a LRC circuit modeling the local plasmon-polariton mode. To explain the overbias emission, the non-Gaussian statistics of the tunneling dynamics of the electrons is essential.