Dissection of the region of Pseudomonas aeruginosa ParA that is important for dimerization and interactions with its partner ParB

Microbiology (Reading). 2014 Nov;160(Pt 11):2406-2420. doi: 10.1099/mic.0.081216-0. Epub 2014 Aug 19.

Abstract

Pseudomonas aeruginosa ParA belongs to a large subfamily of Walker-type ATPases acting as partitioning proteins in bacteria. ParA has the ability to both self-associate and interact with its partner ParB. Analysis of the deletion mutants defined the part of the protein involved in dimerization and interactions with ParB. Here, a set of ParA alanine substitution mutants in the region between E67 and L85 was created and analysed in vivo and in vitro. All mutants impaired in dimerization (substitutions at positions M74, H79, Y82 and L84) were also defective in interactions with ParB, suggesting that ParA-ParB interactions depend on the ability of ParA to dimerize. Mutants with alanine substitutions at positions E67, C68, L70, E72, F76, Q83 and L85 were not impaired in dimerization, but were defective in interactions with ParB. The dimerization interface partly overlapped the pseudo-hairpin, involved in interactions with ParB. ParA mutant derivatives tested in vitro showed no defects in ATPase activity. Two parA alleles (parA84, whose product can neither self-interact nor interact with ParB, and parA67, whose product is impaired in interactions with ParB, but not in dimerization) were introduced into the P. aeruginosa chromosome by homologous gene exchange. Both mutants showed defective separation of ParB foci, but to different extents. Only PAO1161 parA84 was visibly impaired in terms of chromosome segregation, growth rate and motility, similar to a parA-null mutant.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Motifs
  • Amino Acid Sequence
  • Amino Acid Substitution
  • Bacterial Proteins / chemistry*
  • Bacterial Proteins / genetics
  • Bacterial Proteins / metabolism*
  • Dimerization
  • Molecular Sequence Data
  • Protein Binding
  • Pseudomonas aeruginosa / chemistry
  • Pseudomonas aeruginosa / enzymology*
  • Pseudomonas aeruginosa / genetics
  • Pseudomonas aeruginosa / metabolism
  • Sequence Alignment

Substances

  • Bacterial Proteins
  • chromosome partition proteins, bacterial