[Stem cells and senescence]

Postepy Biochem. 2014;60(2):161-76.
[Article in Polish]

Abstract

Stem cells are undifferentiated cells that can differentiate into specialized cells, that build the whole body. These rare cells are required for homeostasis and tissue replacement throughout the human lifespan, and appear to be characterized by a few specific physiological and biochemical properties, particularly the capacity for self-renewal. Recent studies suggest that stem cells may undergo senescence, what plays a crucial role in organismal aging. Importantly, both senescence and apoptosis are anti-cancer mechanisms that counteract neoplastic transformation of stem cells. On the other hand, mechanisms that suppress the development of cancer may also induce an unwanted consequence: a decline in the number and functional alterations of stem cells with advancing age. These functional changes reflect harmful effects of age on the genome, epigenome, and proteome of stem cells. Some of which arise cell independently and others which are imposed by an age-related change in the local milieu or systemic environment. Remarkably, some of the changes, particularly epigenomic and proteomic ones, are potentially reversible, and both environmental (e.g. caloric restrictions, hypoxia) and genetic interventions can lead to inducible pluripotency. Here, we discuss recent discoveries in the field of senescence of stem cells. These findings have profound implications, not only for our understanding of stem cells' biology and organismal aging, but also for stem cell-based regenerative medicine and stem cell-based therapy of age-related diseases.

Publication types

  • Review

MeSH terms

  • Aging / physiology*
  • Animals
  • Apoptosis / physiology
  • Cell Transformation, Neoplastic / metabolism
  • Cellular Senescence / physiology*
  • Epigenesis, Genetic
  • Humans
  • Regenerative Medicine / methods
  • Stem Cells / physiology*