The ABC transporter ABCG1 is required for suberin formation in potato tuber periderm

Plant Cell. 2014 Aug;26(8):3403-15. doi: 10.1105/tpc.114.124776. Epub 2014 Aug 8.

Abstract

The lipid biopolymer suberin plays a major role as a barrier both at plant-environment interfaces and in internal tissues, restricting water and nutrient transport. In potato (Solanum tuberosum), tuber integrity is dependent on suberized periderm. Using microarray analyses, we identified ABCG1, encoding an ABC transporter, as a gene responsive to the pathogen-associated molecular pattern Pep-13. Further analyses revealed that ABCG1 is expressed in roots and tuber periderm, as well as in wounded leaves. Transgenic ABCG1-RNAi potato plants with downregulated expression of ABCG1 display major alterations in both root and tuber morphology, whereas the aerial part of the ABCG1-RNAi plants appear normal. The tuber periderm and root exodermis show reduced suberin staining and disorganized cell layers. Metabolite analyses revealed reduction of esterified suberin components and hyperaccumulation of putative suberin precursors in the tuber periderm of RNA interference plants, suggesting that ABCG1 is required for the export of suberin components.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • ATP-Binding Cassette Transporters / analysis
  • ATP-Binding Cassette Transporters / genetics
  • ATP-Binding Cassette Transporters / metabolism
  • ATP-Binding Cassette Transporters / physiology*
  • Biological Transport / genetics
  • Cell Membrane / metabolism
  • Gene Expression Regulation, Plant
  • Lipids / biosynthesis*
  • Oligonucleotide Array Sequence Analysis
  • Plant Proteins / analysis
  • Plant Proteins / genetics
  • Plant Proteins / metabolism
  • Plant Proteins / physiology*
  • Plants, Genetically Modified / metabolism
  • RNA Interference
  • Solanum tuberosum / genetics
  • Solanum tuberosum / metabolism*

Substances

  • ATP-Binding Cassette Transporters
  • Lipids
  • Plant Proteins
  • suberin