Nanostructure embedded microchips for detection, isolation, and characterization of circulating tumor cells

Acc Chem Res. 2014 Oct 21;47(10):2941-50. doi: 10.1021/ar5001617. Epub 2014 Aug 11.

Abstract

Circulating tumor cells (CTCs) are cancer cells that break away from either a primary tumor or a metastatic site and circulate in the peripheral blood as the cellular origin of metastasis. With their role as a "tumor liquid biopsy", CTCs provide convenient access to all disease sites, including that of the primary tumor and the site of fatal metastases. It is conceivable that detecting and analyzing CTCs will provide insightful information in assessing the disease status without the flaws and limitations encountered in performing conventional tumor biopsies. However, identifying CTCs in patient blood samples is technically challenging due to the extremely low abundance of CTCs among a large number of hematologic cells. To address this unmet need, there have been significant research endeavors, especially in the fields of chemistry, materials science, and bioengineering, devoted to developing CTC detection, isolation, and characterization technologies. Inspired by the nanoscale interactions observed in the tissue microenvironment, our research team at UCLA pioneered a unique concept of "NanoVelcro" cell-affinity substrates, in which CTC capture agent-coated nanostructured substrates were utilized to immobilize CTCs with high efficiency. The working mechanism of NanoVelcro cell-affinity substrates mimics that of Velcro: when the two fabric strips of a Velcro fastener are pressed together, tangling between the hairy surfaces on two strips leads to strong binding. Through continuous evolution, three generations (gens) of NanoVelcro CTC chips have been established to achieve different clinical utilities. The first-gen NanoVelcro chip, composed of a silicon nanowire substrate (SiNS) and an overlaid microfluidic chaotic mixer, was created for CTC enumeration. Side-by-side analytical validation studies using clinical blood samples suggested that the sensitivity of first-gen NanoVelcro chip outperforms that of FDA-approved CellSearch. In conjunction with the use of the laser microdissection (LMD) technique, second-gen NanoVelcro chips (i.e., NanoVelcro-LMD), based on polymer nanosubstrates, were developed for single-CTC isolation. The individually isolated CTCs can be subjected to single-CTC genotyping (e.g., Sanger sequencing and next-generation sequencing, NGS) to verify the CTC's role as tumor liquid biopsy. Created by grafting of thermoresponsive polymer brushes onto SiNS, third-gen NanoVelcro chips (i.e., Thermoresponsive NanoVelcro) have demonstrated the capture and release of CTCs at 37 and 4 °C, respectively. The temperature-dependent conformational changes of polymer brushes can effectively alter the accessibility of the capture agent on SiNS, allowing for rapid CTC purification with desired viability and molecular integrity. This Account summarizes the continuous evolution of NanoVelcro CTC assays from the emergence of the original idea all the way to their applications in cancer research. We envision that NanoVelcro CTC assays will lead the way for powerful and cost-efficient diagnostic platforms for researchers to better understand underlying disease mechanisms and for physicians to monitor real-time disease progression.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Cell Separation / instrumentation
  • Cell Separation / methods*
  • Humans
  • Microfluidic Analytical Techniques / instrumentation
  • Microfluidic Analytical Techniques / methods*
  • Nanostructures / chemistry*
  • Neoplastic Cells, Circulating / pathology*