Intrinsic and acquired resistance to MEK1/2 inhibitors in cancer

Biochem Soc Trans. 2014 Aug;42(4):776-83. doi: 10.1042/BST20140129.

Abstract

Recent clinical data with BRAF and MEK1/2 [MAPK (mitogen-activated protein kinase)/ERK (extracellular-signal-regulated kinase) kinase 1/2] inhibitors have demonstrated the remarkable potential of targeting the RAF-MEK1/2-ERK1/2 signalling cascade for the treatment of certain cancers. Despite these advances, however, only a subset of patients respond to these agents in the first instance, and, of those that do, acquired resistance invariably develops after several months. Studies in vitro have identified various mechanisms that can underpin intrinsic and acquired resistance to MEK1/2 inhibitors, and these frequently recapitulate those observed clinically. In the present article, we review these mechanisms and also discuss recent advances in our understanding of how MEK1/2 inhibitor activity is influenced by pathway feedback.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Antineoplastic Agents / therapeutic use
  • Drug Resistance, Neoplasm
  • Humans
  • MAP Kinase Kinase 1 / antagonists & inhibitors*
  • MAP Kinase Kinase 1 / metabolism*
  • MAP Kinase Kinase 2 / antagonists & inhibitors*
  • MAP Kinase Kinase 2 / metabolism*
  • Mitogen-Activated Protein Kinase 1 / antagonists & inhibitors
  • Mitogen-Activated Protein Kinase 1 / metabolism
  • Mitogen-Activated Protein Kinase 3 / antagonists & inhibitors
  • Mitogen-Activated Protein Kinase 3 / metabolism
  • Neoplasms / drug therapy*
  • Neoplasms / enzymology*

Substances

  • Antineoplastic Agents
  • Mitogen-Activated Protein Kinase 1
  • Mitogen-Activated Protein Kinase 3
  • MAP Kinase Kinase 1
  • MAP Kinase Kinase 2