Mechanochemistry: the effect of dynamics

J Phys Chem A. 2014 Sep 11;118(36):7683-94. doi: 10.1021/jp504959z. Epub 2014 Aug 26.

Abstract

Dynamical effects on the mechanochemistry of linear alkane chains, mimicking polyethylene, are studied by means of molecular dynamics simulations. Butane and octane are studied using density-functional theory (DFT), whereas higher homologues are studied using a simple one-dimensional model in which the molecules are represented by a linear chain of Morse potentials (LCM). The application of a fixed external force to a thermodynamically pre-equilibrated molecule leads to a preference for cleavage of the terminal C-C bonds, whereas a sudden application of the force favors bond breaking in the central part of the chain. In all cases, transition-state theory predicts higher bond-breaking rates than found from the more realistic molecular dynamics simulations. The event of bond dissociation is related to dynamic states involving symmetric vibrational modes. Such modes do in general have lower frequencies of vibration than antisymmetric modes, which explains the deviation between the statistical theory and the dynamics simulations. The good qualitative agreement between the DFT and LCM models makes the latter a useful tool to investigate the mechanochemistry of long polymer chains.