A hybrid model for PM₂.₅ forecasting based on ensemble empirical mode decomposition and a general regression neural network

Sci Total Environ. 2014 Oct 15:496:264-274. doi: 10.1016/j.scitotenv.2014.07.051. Epub 2014 Aug 2.

Abstract

Exposure to high concentrations of fine particulate matter (PM₂.₅) can cause serious health problems because PM₂.₅ contains microscopic solid or liquid droplets that are sufficiently small to be ingested deep into human lungs. Thus, daily prediction of PM₂.₅ levels is notably important for regulatory plans that inform the public and restrict social activities in advance when harmful episodes are foreseen. A hybrid EEMD-GRNN (ensemble empirical mode decomposition-general regression neural network) model based on data preprocessing and analysis is firstly proposed in this paper for one-day-ahead prediction of PM₂.₅ concentrations. The EEMD part is utilized to decompose original PM₂.₅ data into several intrinsic mode functions (IMFs), while the GRNN part is used for the prediction of each IMF. The hybrid EEMD-GRNN model is trained using input variables obtained from principal component regression (PCR) model to remove redundancy. These input variables accurately and succinctly reflect the relationships between PM₂.₅ and both air quality and meteorological data. The model is trained with data from January 1 to November 1, 2013 and is validated with data from November 2 to November 21, 2013 in Xi'an Province, China. The experimental results show that the developed hybrid EEMD-GRNN model outperforms a single GRNN model without EEMD, a multiple linear regression (MLR) model, a PCR model, and a traditional autoregressive integrated moving average (ARIMA) model. The hybrid model with fast and accurate results can be used to develop rapid air quality warning systems.

Keywords: Ensemble empirical mode decomposition; General regression neural network; Multiple linear regression; PM(2.5); Principal components regression.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Air Pollutants / analysis*
  • Air Pollution / statistics & numerical data*
  • China
  • Environmental Monitoring / methods*
  • Forecasting
  • Models, Chemical*
  • Models, Statistical
  • Neural Networks, Computer
  • Particulate Matter / analysis*

Substances

  • Air Pollutants
  • Particulate Matter