Contrast agents for preclinical targeted X-ray imaging

Adv Drug Deliv Rev. 2014 Sep 30:76:116-133. doi: 10.1016/j.addr.2014.07.013. Epub 2014 Jul 30.

Abstract

Micro-computed tomography (micro-CT) is an X-ray based instrument that it is specifically designed for biomedical research at a preclinical stage for live imaging of small animals. This imaging modality is cost-effective, fast, and produces remarkable high-resolution images of X-ray opaque skeleton. Administration of biocompatible X-ray opaque contrast agent allows delineation of the blood vessels, and internal organs and even detection of tumor metastases as small as 300 μm. However, the main limitation of micro-CT lies in the poor efficacy or toxicity of the contrast agents. Moreover, contrast agents for micro-CT have to be stealth nanoparticulate systems, i.e. preventing their rapid renal clearance. The chemical composition and physicochemical properties will condition their uptake and elimination pathways, and therefore all the biological fluids, organs, and tissues trough this elimination route of the nanoparticles will be contrasted. Furthermore, several technologies playing on the nanoparticle properties, aim to influence these biological pathways in order to induce their accumulation onto given targeted sites, organs of tumors. In function of the methodologies carried out, taking benefit or not of the action of immune system, of the natural response of the organism like hepatocyte uptake or enhanced permeation and retention effect, or even accumulation due to ligand/receptor interactions, the technologies are called passive or active targeted imaging. The present review presents the most recent advances in the development of specific contrast agents for targeted X-ray imaging micro-CT, discussing the recent advance of in vivo targeting of nanoparticulate contrast agents, and the influence of the formulations, nature of the nanocarrier, nature and concentration of the X-ray contrasting materials, effect of the surface properties, functionalization and bioconjugation. The pharmacokinetic and versatility of nanometric systems appear particularly advantageous for addressing the versatile biomedical research needs. State of the art investigations are on going to propose contrast agents with tumor accumulating properties and will contribute for development of safer cancer medicine having detection and therapeutic modalities.

Keywords: Computed tomography; Contrast agent; EPR; Micro-CT; Targeting; X-ray imaging.

Publication types

  • Review

MeSH terms

  • Animals
  • Contrast Media*
  • Molecular Imaging
  • X-Ray Microtomography

Substances

  • Contrast Media