Optimal management of replacement heifers in a beef herd: a model for simultaneous optimization of rearing and breeding decisions

J Anim Sci. 2014 Aug;92(8):3636-49. doi: 10.2527/jas.2010-7535.

Abstract

The aim of this study was to provide farmers an efficient tool for supporting optimal decisions in the beef heifer rearing process. The complexity of beef heifer management prompted the development of a model including decisions on the feeding level during prepuberty (age <10 mo), the time of weaning (age, BW, calendar month), the feeding level during the reproductive period (age ≥10 mo), and time of breeding (age, BW, and calendar month). The model was formulated as 3-level hierarchic Markov process. A founder level of the model has 12 states resembling all possible birth months of a heifer. Based on the birth month information from the founder level, for the indoor season (November to April) and outdoor season (May to October), feeding and breeding costs (natural service cost in the outdoor and AI cost in the indoor season) were applied. The optimal rearing strategy was found by maximizing the total discounted net revenues from the predicted future productivity of the Polish Limousine heifers defined as the cumulative BW of calves born from a cow calved until the age of 5 yr, standardized on the 210th day of age. According to the modeled optimal policy, heifers fed during the whole rearing period at the ADG of 810 g/d and generally weaned after the maximum suckling period of 9 mo should already be bred at the age of 13.2 mo and BW constituting 55.6% of the average mature BW. Based on the optimal strategy, 52% of all heifers conceived from May to July and calved from February to April. This optimal rearing pattern resulted in an average net return of EUR 311.6 per pregnant heifer. It was found that the economic efficiency of beef operations can be improved by applying different herd management practices to those currently used in Poland. Breeding at 55.6% of the average mature BW, after a shorter and less expensive rearing period, resulted in an increase in the average net return per heifer by almost 18% compared to the conventional system, in which heifers were bred after attaining 65% of the mature BW. Extension of the rearing period by 2.5 mo (breeding at the age 15.7 mo), due to a prepubertal growth rate lowered by 200 g, reduced the average net return per heifer by 6.2% compared to the results obtained under the basic model assumptions. In the future, the model may also be extended to investigate additional aspects of the beef heifer development, such as the environmental impacts of various heifer management decisions.

Keywords: Markov decision process; beef heifers; optimization.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animal Husbandry / methods*
  • Animals
  • Cattle / physiology*
  • Female
  • Markov Chains
  • Models, Biological*
  • Pregnancy
  • Reproduction / physiology*