Polymorphism in 2-X-adamantane derivatives (X = Cl, Br)

J Phys Chem B. 2014 Aug 14;118(32):9595-603. doi: 10.1021/jp505280d. Epub 2014 Aug 5.

Abstract

The polymorphism of two 2-X-adamantane derivatives, X = Cl, X = Br, has been studied by X-ray powder diffraction and normal- and high-pressure (up to 300 MPa) differential scanning calorimetry. 2-Br-adamantane displays a low-temperature orthorhombic phase (space group P212121, Z = 4) and a high-temperature plastic phase (Fm3̅m, Z = 4) from 277.9 ± 1.0 K to the melting point at 413.4 ± 1.0 K. 2-Cl-adamantane presents a richer polymorphic behavior through the temperature range studied. At low temperature it displays a triclinic phase (P1̅, Z = 2), which transforms to a monoclinic phase (C2/c, Z = 8) at 224.4 ± 1.0 K, both phases being ordered. Two high-temperature orientationally disordered are found for this compound, one hexagonal (P63/mcm, Z = 6) at ca. 241 K and the highest one, cubic (Fm3̅m, Z = 4), being stable from 244 ± 1.0 K up to the melting point at 467.5 ± 1.0 K. No additional phase appears due to the increase in pressure within the studied range. The intermolecular interactions are found to be weak, especially for the 2-Br-adamantane compound for which the Br···Br as well as C-Br···H distances are larger than the addition of the van der Waals radii, thus confirming the availability of this compound for building up diamondoid blocks.