Efficient network meta-analysis: a confidence distribution approach

Stat Methodol. 2014 Sep 1:20:105-125. doi: 10.1016/j.stamet.2014.01.003.

Abstract

Network meta-analysis synthesizes several studies of multiple treatment comparisons to simultaneously provide inference for all treatments in the network. It can often strengthen inference on pairwise comparisons by borrowing evidence from other comparisons in the network. Current network meta-analysis approaches are derived from either conventional pairwise meta-analysis or hierarchical Bayesian methods. This paper introduces a new approach for network meta-analysis by combining confidence distributions (CDs). Instead of combining point estimators from individual studies in the conventional approach, the new approach combines CDs which contain richer information than point estimators and thus achieves greater efficiency in its inference. The proposed CD approach can e ciently integrate all studies in the network and provide inference for all treatments even when individual studies contain only comparisons of subsets of the treatments. Through numerical studies with real and simulated data sets, the proposed approach is shown to outperform or at least equal the traditional pairwise meta-analysis and a commonly used Bayesian hierarchical model. Although the Bayesian approach may yield comparable results with a suitably chosen prior, it is highly sensitive to the choice of priors (especially the prior of the between-trial covariance structure), which is often subjective. The CD approach is a general frequentist approach and is prior-free. Moreover, it can always provide a proper inference for all the treatment effects regardless of the between-trial covariance structure.

Keywords: Confidence distribution; Mixed treatment comparisons; Multiple treatment comparison; Network meta-analysis; Random-effects model.