Ultra-toughened nylon 12 nanocomposites reinforced with IF-WS2

Nanotechnology. 2014 Aug 15;25(32):325701. doi: 10.1088/0957-4484/25/32/325701. Epub 2014 Jul 23.

Abstract

Inorganic fullerene-like WS2 nanoparticle- (IF-WS2) reinforced nylon 12 nanocomposites have been prepared through effective ultrasonic mixing without using any surfactant, followed by molding at 220 °C. Morphological characterizations using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and microcomputed tomography (micro-CT) have revealed the excellent dispersion of IF-WS2 nanoparticles in the nylon 12 matrix. X-ray diffraction (XRD) analyses have confirmed that a phase transition from α'-phase to a more stable γ-phase took place during the sintering of nylon 12, regardless of the amount of IF-WS2 added to the matrix. At a very low IF-WS2 content of 2 wt%, the tensile strength and bending strength of the composites increased slightly by 27% and 28%, respectively. However, the toughness dramatically improved by 185% and 148% at IF-WS2 additions of 0.25 and 0.5 wt%, respectively, when compared to the neat nylon 12. It is believed that such improvements should mainly be attributed to the well-dispersed IF-WS2 within the matrix. The vastly improved toughness suggests that the resulting polymer nanocomposites could be promising for structural and high-performance impact applications.

Publication types

  • Research Support, Non-U.S. Gov't