Gene expression analysis of potential genes and pathways involved in the pathogenic mechanisms of parvovirus B19 in human colorectal cancer

Oncol Lett. 2014 Aug;8(2):523-532. doi: 10.3892/ol.2014.2151. Epub 2014 May 16.

Abstract

In order to investigate the pathogenic mechanisms of parvovirus B19 in human colorectal cancer, plasmids containing the VP1 or VP2 viral capsid proteins or the NS1 non-structural proteins of parvovirus B19 were constructed and transfected into primary human colorectal epithelial cells and LoVo cells. Differential gene expression was detected using a human genome expression array. Functional gene annotation analyses were performed using Database for Annotation, Visualization and Integrated Discovery v6.7 software. Gene ontology (GO) analyses revealed that VP1-related functions included the immune response, immune system process, defense response and the response to stimulus, while NS1-associated functions were found to include organelle fission, nuclear division, mitosis, the M-phase of the mitotic cell cycle, the mitotic cell cycle, M-phase, cell cycle phase, cell cycle process and cell division. Pathway expression analysis revealed that VP1-associated pathways included cell adhesion molecules, antigen processing and presentation, cytokines and the inflammatory response. Moreover, NS1-associated pathways included the cell cycle, pathways in cancer, colorectal cancer, the wnt signaling pathway and focal adhesion. Among the differential genes detected in the present study, 12 genes were found to participate in general cancer pathways and six genes were observed to participate in colorectal cancer pathways. NS1 is a key molecule in the pathogenic mechanism of parvovirus B19 in colorectal cancer. Several GO categories, pathways and genes were selected and may be the key targets through which parvovirus B19 participates in colorectal cancer pathogenesis.

Keywords: colorectal cancer; human; microarray; parvovirus B19; pathogenesis.