Construction of an L-serine producing Escherichia coli via metabolic engineering

J Ind Microbiol Biotechnol. 2014 Sep;41(9):1443-50. doi: 10.1007/s10295-014-1476-6. Epub 2014 Jul 6.

Abstract

L-Serine is a nonessential amino acid, but plays a crucial role as a building block for cell growth. Currently, L-serine production is mainly dependent on enzymatic or cellular conversion. In this study, we constructed a recombinant Escherichia coli that can fermentatively produce L-serine from glucose. To accumulate L-serine, sdaA encoding the L-serine dehydratase, iclR encoding the isocitrate lyase regulator, and arcA encoding the aerobic respiration control protein were deleted in turn. In batch fermentation, the engineered E. coli strain YF-5 exhibited obvious L-serine accumulation but poor cell growth. To restore cell growth, aceB encoding the malate synthase was knocked out, and the engineered strain was then transformed with plasmid that overexpressed serA (FR) , serB, and serC genes. The resulting strain YF-7 produced 4.5 g/L L-serine in batch cultivation and 8.34 g/L L-serine in fed-batch cultivation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Escherichia coli / genetics*
  • Escherichia coli / metabolism*
  • Escherichia coli Proteins / genetics
  • Escherichia coli Proteins / metabolism
  • Fermentation
  • Glucose / metabolism
  • Metabolic Engineering*
  • Plasmids / genetics
  • Plasmids / metabolism
  • Serine / biosynthesis*

Substances

  • Escherichia coli Proteins
  • Serine
  • Glucose