Quantum chemical and matrix-IR characterization of CH3CN-BCl3: a complex with two distinct minima along the B-N bond potential

Phys Chem Chem Phys. 2014 Aug 21;16(31):16480-91. doi: 10.1039/c4cp01495b.

Abstract

We have characterized the structural and energetic properties of CH3CN-BCl3via computations and matrix-IR spectroscopy. We find two equilibrium structures of the complex via computations. At the MP2/aug-cc-pVTZ level, the global minimum energy structure has a B-N distance of 1.601 Å, and a binding energy of 12.0 kcal mol(-1). The secondary structure lies 7.1 kcal mol(-1) higher in energy with a B-N distance of 2.687 Å and a binding energy of 4.9 kcal mol(-1). Computational scans of the B-N potential curve using both DFT and post-HF methods indicate that a significant barrier exists between these structures, and that it lies 1 to 2 kcal mol(-1) above the secondary minimum at a B-N distance of about 2.2 Å. We also observed several key, structurally-sensitive IR bands for six isotopic forms of the complex in neon matrices, including: the B-Cl asymmetric stretching band (ν) at 792 cm(-1) and the C-N stretching band (νCN) at 2380 cm(-1) (for the primary isotopomer, CH3C(14)N-(11)BCl3). These frequencies are consistent with computational predictions for the minimum-energy form of the complex. Energy decomposition analyses were conducted for CH3CN-BCl3 and also two related complexes, CH3CN-BF3 and CH3CN-BH3. These provide insight into the trend in Lewis acidity of the BX3 acceptors toward nitriles. Furthermore, these analyses indicate that the barrier along the B-N potential of CH3CN-BCl3 results from Pauli repulsion between the π electrons on the nitrile moiety and the chlorine atoms in BCl3, which is significant at relatively long distances where attractive bonding interactions fail to overcome it.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Boranes / chemistry*
  • Chlorides / chemistry*
  • Cyanides / chemistry*
  • Quantum Theory*
  • Spectrophotometry, Infrared / methods*

Substances

  • Boranes
  • Chlorides
  • Cyanides
  • boron trichloride