Double-resonance enhanced intersubband second-order nonlinear optical susceptibilities in GaN/AlGaN step quantum wells

Opt Express. 2014 Jun 16;22(12):14212-20. doi: 10.1364/OE.22.014212.

Abstract

Second-order nonlinear optical susceptibilities for second harmonic generation (SHG) associated with intersubband transitions in GaN/AlGaN single quantum well and step quantum well have been studied theoretically by solving Schrödinger and Poisson equations self-consistently. The calculated results suggest that due to the very large polarization-induced field in the quantum well, the potential profile becomes asymmetrical, leading to large second-order susceptibilities. A high value about 4 × 10-7 m/V can be obtained in single quantum well structure. Furthermore, by adopting step quantum well structure to increase the asymmetry degree of the potential profile and manipulate the energy levels for double-resonance, a significant enhancement of second-order susceptibility can occur in step quantum well. Specifically, the susceptibility can be as large as 4 × 10-6 m/V with structure optimization, about an order of magnitude greater than that in single quantum well. The results indicate that nonlinear optical elements based on GaN/AlGaN step quantum wells are very promising for SHG in a wide range of wavelengths from telecommunication to mid-infrared, especially effective in longer wavelength.

Publication types

  • Research Support, Non-U.S. Gov't