Modification of the respiratory syncytial virus f protein in virus-like particles impacts generation of B cell memory

J Virol. 2014 Sep 1;88(17):10165-76. doi: 10.1128/JVI.01250-14. Epub 2014 Jun 25.

Abstract

Immunization with virus-like particles (VLPs) containing the Newcastle disease virus (NDV) core proteins, NP and M, and two chimera proteins (F/F and H/G) containing the respiratory syncytial virus (RSV) F- and G-protein ectodomains fused to the transmembrane and cytoplasmic domains of NDV F and HN proteins, respectively, stimulated durable RSV-neutralizing antibodies, F-protein-specific long-lived, bone marrow-associated plasma cells (LLPCs), and B cell memory, in striking contrast to RSV infection, which did not (M. R. Schmidt, L. W. McGinnes, S. A. Kenward, K. N. Willems, R. T. Woodland, and T. G. Morrison, J. Virol. 86:11654-11662, 2012). Here we report the characterization of a VLP with an RSV F-protein ectodomain fused to the NDV F-protein heptad repeat 2 (HR2), transmembrane, and cytoplasmic domain sequences, creating a chimera with two tandem HR2 domains, one from the RSV F protein and the other from the NDV F-protein ectodomain (F/HR2F). The F/HR2F chimera protein was efficiently assembled into VLPs along with the H/G chimera protein. This VLP (VLP-H/G+F/HR2F) stimulated anti-F-protein and anti-G-protein IgG, durable RSV-neutralizing antibodies, and anti-RSV F-protein-secreting LLPCs. However, the subtypes of anti-F-protein IgG induced were different from those elicited by VLPs containing the F/F chimera (VLP-H/G+F/F). Most importantly, VLP-H/G+F/HR2F did not induce RSV F-protein-specific B cell memory, as shown by the adoptive transfer of B cells from immunized animals to immunodeficient animals. The VLP did, however, induce B cell memory specific to the RSV G protein. Thus, the form of the F protein has a direct role in inducing anti-F-protein B cell memory.

Importance: The development of vaccines for respiratory syncytial virus (RSV) is hampered by a lack of a clear understanding of the requirements for eliciting protective as well as durable human immune responses to virus antigens. The results of this study indicate that the form of the RSV F protein has a direct and significant impact on the type of anti-F-protein IgG antibodies induced and the generation of F-protein-specific memory. Identification of the conformation of the RSV F protein that most effectively stimulates not only LLPCs and but also memory B cells will be important in the future development of RSV vaccines.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Antibodies, Neutralizing / blood
  • Antibodies, Viral / blood
  • B-Lymphocytes / immunology*
  • Genetic Vectors
  • Immunoglobulin G / blood
  • Immunologic Memory*
  • Mice, Inbred BALB C
  • Neutralization Tests
  • Newcastle disease virus / genetics
  • Recombinant Fusion Proteins / genetics
  • Recombinant Fusion Proteins / immunology
  • Respiratory Syncytial Virus Vaccines / administration & dosage
  • Respiratory Syncytial Virus Vaccines / genetics
  • Respiratory Syncytial Virus Vaccines / immunology*
  • Respiratory Syncytial Virus, Human / genetics
  • Respiratory Syncytial Virus, Human / immunology*
  • Vaccines, Synthetic / administration & dosage
  • Vaccines, Synthetic / genetics
  • Vaccines, Synthetic / immunology
  • Vaccines, Virus-Like Particle / administration & dosage
  • Vaccines, Virus-Like Particle / genetics
  • Vaccines, Virus-Like Particle / immunology*
  • Viral Fusion Proteins / genetics
  • Viral Fusion Proteins / immunology*

Substances

  • Antibodies, Neutralizing
  • Antibodies, Viral
  • F protein, human respiratory syncytial virus
  • Immunoglobulin G
  • Recombinant Fusion Proteins
  • Respiratory Syncytial Virus Vaccines
  • Vaccines, Synthetic
  • Vaccines, Virus-Like Particle
  • Viral Fusion Proteins