Multilevel hierarchical kernel spectral clustering for real-life large scale complex networks

PLoS One. 2014 Jun 20;9(6):e99966. doi: 10.1371/journal.pone.0099966. eCollection 2014.

Abstract

Kernel spectral clustering corresponds to a weighted kernel principal component analysis problem in a constrained optimization framework. The primal formulation leads to an eigen-decomposition of a centered Laplacian matrix at the dual level. The dual formulation allows to build a model on a representative subgraph of the large scale network in the training phase and the model parameters are estimated in the validation stage. The KSC model has a powerful out-of-sample extension property which allows cluster affiliation for the unseen nodes of the big data network. In this paper we exploit the structure of the projections in the eigenspace during the validation stage to automatically determine a set of increasing distance thresholds. We use these distance thresholds in the test phase to obtain multiple levels of hierarchy for the large scale network. The hierarchical structure in the network is determined in a bottom-up fashion. We empirically showcase that real-world networks have multilevel hierarchical organization which cannot be detected efficiently by several state-of-the-art large scale hierarchical community detection techniques like the Louvain, OSLOM and Infomap methods. We show that a major advantage of our proposed approach is the ability to locate good quality clusters at both the finer and coarser levels of hierarchy using internal cluster quality metrics on 7 real-life networks.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms
  • Cluster Analysis*
  • Models, Theoretical*
  • Principal Component Analysis
  • Social Support*
  • Software

Grants and funding

This work was supported by Research Council KUL: ERC AdG A-DATADRIVE-B, GOA/11/05 Ambiorics, GOA/10/09MaNet, CoE EF/05/006 Optimization in Engineering(OPTEC), IOF-SCORES4CHEM, several PhD/postdoc and fellow grants; Flemish Government: FWO: PhD/postdoc grants, projects: G0226- .06 (cooperative systems & optimization), G0321.06 (Tensors), G.0302.07 (SVM/Kernel), G.0320.08 (convex MPC), G.0558.08 (Robust MHE), G.0557.08 (Glycemia2), G.0588.09 (Brain-machine) G.0377. 12 (structured models) research communities (WOG:ICCoS, ANMMM, MLDM); G.0377.09 (Mechatronics MPC) IWT: PhD Grants, Eureka-Flite+, SBO LeCoPro, SBO Climaqs, SBO POM, O&O-Dsquare; Belgian Federal Science Policy Office: IUAP P6/04 (DYSCO, Dynamical systems, control and optimization, 2007-2011); EU: ERNSI; FP7-HD-MPC (INFSO-ICT-223854), COST intelliCIS, FP7-EMBOCON (ICT-248940); Contract Research: AMINAL; Other:Helmholtz: viCERP, ACCM, Bauknecht, Hoerbiger. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.