The reinvestigation of the kinetics of the metathesis reactions t-C4H9• + HBr (HI) → i-C4H10 + Br• (I•) and of the t-C4H9• free radical thermochemistry

J Phys Chem A. 2014 Jul 17;118(28):5135-48. doi: 10.1021/jp500724r. Epub 2014 Jul 3.

Abstract

A reinvestigation of the absolute rate constant of the metathesis reactions t-C4H9• + HBr → i-C4H10 + Br• (1) and t-C4H9• + HI → i-C4H10 + I• (2) was performed thanks to a recently developed apparatus consisting of a Knudsen reactor coupled to detection based on single-photon (VUV) photoionization mass spectrometry (SPIMS). It enables the generation of thermalized hydrocarbon free radicals owing to a source upstream of and external to the Knudsen reactor. The following Arrhenius expressions were obtained: k1 = 5.6(±1.4) × 10(–12) exp(−6.76(±0.94)/(RT)) and k2 = 2.0(±0.6) × 10(–11) exp(−8.48(±0.94)/(RT)) with R = 8.314 J mol(–1) K(–1) over the range 293 to 623 K. The mass balance of the reaction system based on closed shell product detection (CSPD) was checked in order to ensure the accuracy of the used reaction mechanism and as an independent check of k1 and k2. The wall-loss rate constants of the t-butyl free radical, kw(C4H9), were measured and found to be low compared with the corresponding escape rate constant, ke(C4H9), for effusion of t-C4H9• out of the Knudsen reactor. On the basis of the present results, the free radical standard heat of formation ΔfH298°(t-C4H9•) = 44.3 ± 1.7 kJ mol(–1) was obtained when combined with the kinetics of the inverse halogenation reaction taken from the literature and using S298°(t-C4H9•) = 322.2 J K(–1) mol(–1) following a “Third Law” evaluation method. The standard enthalpy for t-butyl free radical is consistent for both the bromination and iodination reactions within the stated uncertainties.