From 2,4-dimethoxypyrimidine to 1,3-dimethyluracil: isomerization and hydrogenation enthalpies and noncovalent interactions

J Phys Chem A. 2014 Jul 3;118(26):4816-23. doi: 10.1021/jp503412u. Epub 2014 Jun 23.

Abstract

An enthalpic value for the N-methyllactam/O-methyllactim isomerization, in the gaseous phase, is reported in this work for the conversion between 2,4-dimethoxypyrimidine and 1,3-dimethyluracil. For this purpose, the enthalpy of formation of 2,4-dimethoxypyrimidine, in the gaseous phase, was obtained experimentally combining results from combustion calorimetry and Calvet microcalorimetry, and the enthalpy of formation of 1,3-dimethyluracil, in the gaseous phase, reported previously in the literature, is also discussed. The enthalpy of hydrogenation of 1,3-dimethyluracil is compared with the enthalpy of hydrogenation of uracil and interpreted in terms of aromaticity, considering the influence of the hyperconjugation and the hindrance of the solvation of the ring by the methyl groups. The enthalpy of sublimation of 2,4-dimethoxypyrimidine was obtained combining Calvet microcalorimetry and differential scanning calorimetry results. This enthalpy is compared with the enthalpy of sublimation of 1,3-dimethyluracil previously reported in the literature and analyzed herein. From the interplay between the experimental results and the theoretical simulation of dimers of these molecules, the influence of stereochemical hindrance on the in-plane intermolecular contacts and aromaticity on the π···π interactions is analyzed.