Catalytic effect of water, formic acid, or sulfuric acid on the reaction of formaldehyde with OH radicals

J Phys Chem A. 2014 Jul 3;118(26):4797-807. doi: 10.1021/jp502886p. Epub 2014 Jun 23.

Abstract

In this paper, for the hydrogen abstraction reaction of HCHO by OH radicals assisted by water, formic acid, or sulfur acid, the possible reaction mechanisms and kinetics have been investigated theoretically using quantum chemistry methods and transition-state theory. The potential energy surfaces calculated at the CCSD(T)/6-311++G(df,pd)//MP2(full)/6-311++G(df,pd) levels of theory reveal that, due to the formation of strong hydrogen bond(s), the relative energies of the transition states involving catalyst are significantly reduced compared to that reaction without catalyst. However, the kinetics calculations show that the rate constants are smaller by about 3, 9, or 10 orders of magnitude for water, formic acid, or sulfur acid assisted reactions than that uncatalyzed reaction, respectively. Consequently, none of the water, formic acid, or sulfur acid can accelerate the title reaction in the atmosphere.