Dimethylsilyl bis(amidinate)actinide complexes: synthesis and reactivity towards oxygen containing substrates

Dalton Trans. 2014 Aug 7;43(29):11376-87. doi: 10.1039/c4dt01361a. Epub 2014 Jun 13.

Abstract

The reactivity of the monoanionic amidinate ligand [(CH3)3CNC(Ph)NSiMe2NC(Ph)-NHC(CH3)3]Li (1) with a silyl amido side arm towards the early actinides, uranium and thorium, was investigated. While the salt metathesis reaction with ThCl4(thf)3 afforded the bis(amidinate)thorium(iv) dichloride complex [(CH3)3CNC(Ph)NSi(CH3)2NC(Ph)-NHC(CH3)3]ThCl2 (2) in high yield, the reaction of ligand 1 with UCl4 leads to a Lewis acid supported nucleophilic attack of an incoming ligand unit, yielding the trichloro uranium complex [(CH3)3CNC(Ph)Si(CH3)2-N(C(CH3)3)C(Ph)NSi(CH3)2NC(Ph)N-(C(CH3)3]UCl3 (4). The exposure of in situ formed complex 2 to wet THF solutions (<1% w of water), gave the mono(amidinate)Th(iv)(chloro)(bis-hydroxo) dimeric complex [(CH3)3CNC(Ph)NSiMe2NC(Ph)NHC(CH3)3Th(OH)2(Cl)]2·(3) as bright red needles, exhibiting extremely short Th-OH bond distances (1.741(5) Å and 1.737(5) Å). The reactivity of the thorium complex 2 in the ring opening polymerization (ROP) was studied, showing high activity. Thermodynamic and kinetic measurements were performed to shed light on the mechanism for the ROP.