Role of dynamic effects in the characterization of multilayers by means of power spectral density

Appl Opt. 2014 May 10;53(14):3019-27. doi: 10.1364/AO.53.003019.

Abstract

In this paper, we present measurements of angle- and wavelength-resolved diffuse scattering of EUV radiation on a Mo/Si multilayer. Our sample is optimized for high reflectivity at 13.5 nm wavelength near-normal incidence. We present a rigorous theoretical analysis of the off-specular EUV scattering on the basis of the distorted-wave Born approximation. We prove that the determination of the interface roughness power spectral density (PSD) is only possible by considering geometry-dependent and dynamic contributions. The scattering from multilayer mirrors leads to an intrinsic enhancement in off-specular intensity independent of roughness properties. The thickness oscillations in the scattering intensity (Kiessig fringes) are found to cause additional dynamic enhancement in analogy to Bragg-like peaks for grazing incidence geometry. Considering these effects, the interface PSD is consistently determined.